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Abstract — [n this paper the non-lincar response of layered composite plates with initial imper-
tections and subjected to in-plane preloiad is considered. The basic equations used in the analysis
are those corresponding to an accurate shear deformation theory which employs parabolic shear
strain variations across the thickness and requires no correction factors. The five governing
non-lincar equilibrium equations of the problem are reduced to a single non-lincar ordinary dif-
ferential equation (ODE) using a single mode approach in conjunction with the Galerkin method.
Numerical results are obtained for two problems: (i) large amplitude vibration of impertect
plates and (1) small oscillations in the vicinity of a static buckled position of an in-plane loaded
two-layvered (0 90) plate.

NOTATION
ahoh length, width, and total thickness of plate
k. E, Young's moduli
GGG shear moduli
In static dellection of in-plane loaded plate (see egn (1X))
h static dellection of plate at limt load (see eqn (22))
/i total deflection ol preloaded plite (see eqn (19))
/. tme-dependent part of the deflection of preloaded plite (see eqn (19)
I, thicknesses of the individual Layers
V NV,
MMM pstresseresultants (see eyn (5))
VoML M
A biturcation buckiing and limit loads in static compression
ALV applied in-plane loads in the x- and v-directions on the plate
TR applied transverse loads in the z-direction on the inner and outer surface of the plate (¢ = ¢, +¢.)
time coordinate
worow displacement components in the x-, v-, z-directions
i U W displucement components in the x-, -, z-directions at the mid-plane
T shear rotations of the normals at the mid-plane
W, initial imperfections
LR Dt Cartesian coordinate system
A shear strains
EE L nornl striins
v, Poisson's ratio
o mass density of plate material
Preps mass densities of individual Liyers
a.n,.0 normal stresses
T,.To 0, shear stresses
Q lincar radian frequency of plate (see eqn (12))
Q4 non-lincar radian frequency of plate (see eqn (7))
Q, radian frequency ol preloaded plate.

INTRODUCTION

Due to their increased use as light-weight high-strength structural components, vibration
of fibre-reinforced plates and shells has been the subject of significant current interest. as
discussed by Bert (1982) and Leissa (1981). The bulk of the research on laminated plates
has been concerned with small amplitude vibrations, static buckling and post-buckling
analysis of perfect plates.
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Recent studies on the vibration analysis of plates are directed towards the analysis of
imperfect plates. Dynamic buckling of isotropic structures when initial imperfections. in-
plane inertia and geometric nonlinearities are taken into account (individually) has been
treated extensively by Bolotin (1964), and Ambartsumian er al. (1966). More recently.
combined treatment of this problem for isotropic plates is given by Pusic and Herrmann
(1984). Considering large amplitude vibration of an imperfect plate Hui (1984) showed
that. unlike the more familiar hardening type nonlinearity of perfect plates. geometric
imperfections (depending on their magnitude) may change the characteristics to soft-spring
type.

The ettects of geometric imperfections on the frequency-load interaction of preloaded
(biaxially compressed) composite plates has been studied by Hui and Leissa (1983) for
homogencous plates and by Hui (1985) for angle-ply laminated plates. Elishakofl er «l.
(1987) showed that frequency of a preloaded cylindrical panel vanishes when the load
reaches the limit load.

Studies on the effects of initial imperfections and preload on the frequency of buckled
structures has been made by Elishakoft ¢r al. (1984) and de Souza (1983, 1987) using
simple models which represent a number of structures. These models include symmetric.
asymmetric, and general non-symmetric cases. Elishakofl et af. (1984) have derived the
closed form formulae for the natural frequency of these various models. In his studies de
Souza (1985, 1987) also investigated the effect of dumping on the vibration of preloaded
structures.

It can be noted here that in all the above mentioned studies the basic equations used
are those corresponding to the classical thin plate theory. 1tis a well-gstablished fact that
the effects of shear deformation are more pronounced in composite plates. Thus, it is more
appropriate to treat the vibration of buckled compaosite plates using a shear deformation
theory. In this paper vibration of a4 preloaded laminated plate has been considered using a
more recently proposed parabolic shear theory (PST) (Bhimaraddi and Stevens, 1984 ;
Bhimaraddi, 19874) in which shear strains are assumed to vary parabolically across the
thickness.

In the present analysis the non-lincar (von Karman type) equations ol Bhimaraddi
(1987b) ure modified to inctude the initial imperfections. Since the present theory includes
the thin plate theory (TPF) and the Mindlin-type constant shear theory (CST) as speciul
cases, the comparison of these with PST has also been made. A briet description of PST
will be presented in what follows,

BASIC EQUATIONS OF THE PARABOLIC SHEAR THEORY
The components of displacements (refer to Notation) are assumed as

wy,

ox

w{xovozot) = wp(eo v )+ Cuy(x v 0 —-

. Jw,
vy, oo =y e )+ Se (v ) -z
oy

wx, v.o00) = wolv i f) (hH

where

The strain displacement relations are written. using the above displacement forms. as
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The constitutive relations and the definitions for stress-resultants are written as
g, = CIIE,\+CIZB}‘: U}' = CIZEJ+CZZEJ'
t.\:r = C(!b.l’xvr: T = C-l-lyr:: r.r: = CSS}'_I': (4)
N, M, M, a,
N, M, M. |= J. o, |(l.=z.8)d=. (3)
N(I' 1‘/[\ v 1" ’\I' t w

The equilibrium cquations in terms of stress-resultants are written as (Bhimaraddi, 1987a)

N, N N ,(”u o=
x oy Par &5

ON,, N, %y

PR [
(‘i‘/::" + "{:l"“. _.J-r‘_,c“* d- = ‘[[) z:;’:' Ed:
‘W(:[Y'l‘ + ‘?g{: "J‘rr::* d- = J‘p ;:l; Ed:z

RIS A B
07wy o'u c

+ ol 55 —2 LTy a]dz (6)
or oxcrr T over

Expressing stress-resultants (5) in terms of five generalized displacement parameters
using egns (1)-(4) and substituting the sume in the equilibrium cquations, eqns (6). onc
obtiins five governing cquations in terms of five displacement parameters of the problem
under consideration. The stress-resultants and the equilibrium equations in terms of dis-
placements are given in the Appendix. The boundary conditions along the edge of the plate
require that, either one member of each of the following six pairs or six lincarly independent
combinations of them must be specified :

along x = constant

Cwg
)
ax

Netol Ny.vor Meou: Mgvyo Qawe: M.

along 3 = constant
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The governing equations for the classical TPT can be obtained by using { =0 or
alternatively by ignoring the terms and equations associated with u,. and ¢, displucment
parameters. Whereas, the governing equations for the Mindlin-type CST can be obtained
by using ¢ = - in conjunction with the shear correction factor. Note that CST in the present
case is not exactly the Mindlin plate theory but is similar o it in respect to its assumption
of constant shear strain variation across the thickness. In the present CST. unlike the
Mindlin theory. rotations of the mid-plane are split into two parts one corresponding to
the well-known flexural rotation and the other corresponding to the shear rotation.

SOLUTION OF EQUILIBRIUM EQUATIONS

The closed-form solution to the coupled non-linear equilibrium equations (eqns (AS5a)-
{A5e)) s ditficult to obtain. Here an approximate solution using the Galerkin method is
sought. As an example, a simply supported plate has been considered and the following
single-maode solution has been assumed for transverse displacement wy

wolv r ) = [ sinavsin fly (x=nfa: i = n/h) (7

and the other displacement parameters can be written as follows :

ty = ayf cos xx sin fr4a, f7osin 2ax+a f 7 sin 2ev cos 2fy
+ e N¥a N4 as)x

ro = ayf sin xx cos frdaf sin 2fv+a, [ cos 2z sin 2y
Fla  N¥+a N ¥va)y

aqfeos ax sin Byagf* sin 2ax+a, /7 sin 22x cos 2fy

#

1y

i

Uy o= agefsin ay cos Byag f7osin 2Bv a7 cos 2ax sin 2. {8y

Equations (8) have been written by neglecting the inertia terms appearing in eqns {6a) -
(6d). Quantitics ¢, -« can be obtained by substituting egns (8) in eyns (ASa)-(ASd) and
cquating the coetlicients of like trignometric terms and the quantities i -4 cin be obtained
by using the following boundary conditions

h ¢
1 -
J‘ Nl a.dyr=NE f N dy = N5 {9}
[ {4 h

i H

Here N¥ and MY are the in-plane forces (tension positive} and are assumed to be time
independent. It can be verified that the sclection of eqns (8) satistics the zero in-plane shear
condition along the four edges of the plate. Substituting eqns (7) and (8) in eqn (ASe) and
applying the Galerkin method once obtains the following equation:

h

d-f , .
2y d!{ (2t NI+ 2 N 2 a0 =q. (10

It may be noted here that in obtaining eqn (10} the inertia terms associated with ..
to. tty, and v in eqn (ASe) have been neglected. Considering the proportional loading
(N¥=ANY 4 = constant, N* = V) eqn (10) may be written as
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where
I N 2,
Q=1+ —}; L= 2
LT ( + N) M. A+ A, (12)

Here .V, and Q; correspond to the bifurcation buckling load in static compression and the
lineur free vibration frequency of an in-plane loaded perfectly flat plate, respectively.

Following exactly the same steps as above and incorporating the influence of initial
imperfections (1F,) one can obtain the following equation which governs the non-linear
flexural response of an imperfect plate with in-plane loading :

X, + (ot t fut 0 fiH AN+ A NS+ g+ 20 /) [+ 2,/

+(as NI+ N fu=q. (13)
Here it is ussumed that the initial imperfections arc of the type
Wo = fy sin o sin iy (14)

Using cqn (13) various problems of the flexural response of plates can be addressed.
Among others, the large amplitude vibration of an imperfect plate (N = 0) and small
amplitude vibration ol a preloaded plate in the vicinity of its static buckled position are
considered in this paper.

LARGE AMPLITUDE VIBRATIONS OF IMPERFECT PLATE

Equation (13), in the absence of in-plane and transverse (N = ¢ = 0) loads, can be
written as

Y 4.

d s e,
a?f +0, S+ 8 48, =0, (15)

The above equation is a second-order ODE with quadratic and cubic nonlinearitics.

The solution ol this equation can be obtained by using the method of multiple scales
(Bhimaraddi, 1987b). The solution can be written as

f(1) = A cos Q+ LA%[e, cos 2Q+¢,]+ 1A% ¢y cos 3Q
+ 1A% ey cos 4Q+ ¢ cos 2Q+¢, )+ L A [¢; cos 5Q+ ¢y cos 3Q)
+ h A%y cos 6Q+ ¢y cos 4Q+ ¢, cos 2Q+¢ 5]
+ g5 A7 [cyy cos TQ+¢ ), cos 5Q+¢5 cos 3Q) (16)

where Q = Qu 1+ 0, 4 and © are to be determined from the initial conditions and Qy is
the non-lincar frequency which is dependent on the amplitude A in the following manner:

Qu =3 (14+b, A2 +hrA* +5,4%) (17
and the expressions for b,, ., and b, are given in a previous paper (Bhimaraddi, 1987b).

Typical material properties considered in the computation of numerical results for a square
composite (two-layered. 0/90) plate correspond to the following :
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Fig. 1. Relation between non-linear frequency and amplitude for two-layered (0:90) square plate
(- PST, - -, CST; — — ., TPT).
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To facilitate the comparison of various theorics, values of Qp in (Q/Quy ), (€2,/€2) and
N_in (N/N) correspond to those obtained by using PST. The uccuracy and the correctness
of the algebra involved in the present work has been verified by comparing the solutions
with those available in the literature for various cases such as @ lincar static and free vibrution
solutions {Bhimaraddi and Stevens, 1984), non-lincar free vibration of isotropic plates
solutions {Bolotin, 1964 ; Ambartsumian ¢t ¢l., 1966), and non-linear vibrations of in-plane
loaded plates (Bhimaraddi, 1987b). The shear correction factors used (in the case of CST)
correspond to n/12.

Figure | shows the amplitude vs frequency variation of a two-layered (0/90) square
plate with different initial imperfections. It is clearly scen that there is hardly any difference
in the predictions of PST and CST. But there is a considerable ditlerence between the shear
deformable theories and the TPT.

As observed by Hui (1984) one can note that for lower imperfection values (f,/h < 1/3)
the response is of hardening type whereas, for higher imperfection values (f,/h > 1/3) the
response is of soft-spring type. It has been observed that for highly imperfect plates
(fo'h = 2/3), with amplitude vibration greater than 0.754, the perturbation method did not
give meaningtul results for shear deformable theories; and whereas, such an observation
wits not made in the case of TPT.

It may be seen that if the response is of the hardening type the difference between PST
and TPT gradually diminish as the amplitude of vibration increases : whereas, if the response
is of soft-spring type the opposite is truc. This observation suggests that for hard-spring
type response the shear deformation effects diminish as the amplitude of vibration increuses
and for soft-spring type response the shear deformation effects dominate with the increasing
amplitude of vibration. Also comparing Figs 1(a) and (b) onc can note that the greater the
thickness of the plate the greater is the dominance of the shear deformation effects on the
frequency.
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Fig. 2. Relation between frequency and the applied in-plane foad for two-layered square plate.

SMALL AMPLITUDE VIBRATIONS OF BUCKLED PLATES

FFor this case the static part of eqn (13) is first considered in the absence of transverse
load (¢ = 0y which may be written as

N o
N.((),,_/,,-f—(),) = (). (18)

<

Sy fu +()‘.../',f +0. /7 +

Thus, for a given level of loading (N/N,) and for a given value of initial imperfection one
can solve egn (18) to obtain the transverse displacement (/) prior to imposing free
vibrations in the form ol the buckling mode. Then at any instant of time the total dis-
placement of the plate is given by

Jv =+ /0 (19

Here /; is the time-dependent part of the displacement. Now the equation of motion for the
small amplitude vibration of a plate in the vicinity of its buckled position can be written,
after substituting egn (19) in eqn (13) and neglecting non-linear terms in f;, as

&,

. coe NV
11 3 +((5|+2():_/;|+3())./6+ "‘)-l>./l=0' (20)
de N,

In the above equation f, has to be obtained from egqn (18). Before presenting the numerical
results it can be shown that the term in parentheses in eqn (20) becomes zero when the load
reaches the limit load. To do this consider again eqn (18) and rewrite it in the following
manner:

N [él;/_;' +‘*:‘/‘5.+‘53[£] :

N, Oufutds

at limit load one has (d/d /) (N/N,) = 0. which leads to
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Fig. 3. Relation between freguencey and the applied m-plane load for two-lavered square plate.

2(5‘()',/.1‘ + (0.0, + 30 ‘0\-),/‘,3 +20.0, /L +0,0 =0, (22)

Here f; indicates the displacement at timit load. Substituting /; in place of f, and N /¥ in

place of ¥ N . via egn (21), one can see that the term in parentheses ineyn (20) reduees to

the lett-hand side of eqn (22). Thus if the plate is imperfection sensitive, for which limit

foad is less than the critical load (N, < V). the frequency goes on deereasing as the load
t [ & &

level inereases and becomes zero at limit load. However, for impertection insensitive plates

the Irequency increases as the load increases.

w
o

| | !
Materiat [, #/@2015, /b«

N/N-

Fig. 4. Relation between frequency and the applied in-plane load for two-layered square plate.
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Figures 2-4 illustrate the relation between the frequency of vibration and the preload
for a square plate with two different material and overall thicknesses. [t may be seen from
these figures that the frequency becomes zero when the preload reaches the critical load for
perfect plates. Also it may be noted that the frequency increases as the preload increases
for impertfect plates. This suggests, as stated earlier. that the plate examples considered here
are imperfection insensitive.

For perfect plates. it may be observed that CST under-estimates the frequency whereas
TPT over-estimates the same when the preload is less than the critical load when compared
with PST. For imperfect plates CST always under-estimates the frequency and TPT always
over-estimates the same. Again one can note that the difference between CST and PST is
hardly noticeable and that between TPT and PST is considerable. However, if the preload
is high the difference between PST and TPT is very small. Comparing Figs 2 and 3 (also
Figs 2 and 4). it may be said that the effects of shear deformation become increasingly
evident as the plate thickness increases and as the material of the plate becomes highly
anisotropic.

CONCLUSIONS

The vibration analysis of laminated composite plates including the shear deformation
cffects and the additional complicating cftects such as: in-plane loading. initial imper-
fections, and the geometric nonlincaritics has rarely been addressed in the literature. In this
paper the non-lincar response of imperfect composite plates has been considered using an
accurate shear deformation theory. The difference between the predictions of the classical
TPT and the shear deformation theory is considerable and the magnitude of this difference
depends on the in-plane toading and the initial imperfections ot the plate, For some
combination of these parameters TPT may give as accurate results as those ol shear
deformation theories.

Achknowledgements The work was carried out when the author was at the Indian Institute of Technology,
Bombay, tndie Typing ol the manuscript and the preparation of the drawings were carried out by Mry
Priyadarshint.

REFERENCES

Ambartsumian, S, AL, Bagdasarian, G. E., Gurgarian, S. M. and Gnuny, V. Ts. (1966). Some problems of
vibration and stability of shells and plates. far. J. Solids Structures 2, 59 81,

Bert, C. W (1982). Rescarch on dynamics of composite and sandwich plates. Shock Vibr, Dig. 14,17 34.

Bhimaraddi, AL (1987:). Static and transient response of rectangular plates. Thin-Walled Struct. 5,125 -144,

Bhimaraddi, AL (1987b). Nonlinear flexural vibrations ol rectangular plates subjected to in-plane forees using a
new shear deformation theory. Thin-Walled Struct. 8, 309 325,

Bhimaraddi. A and Stevens, L. K. (1984). A higher order theory for free vibration of orthotropic. homogencous,
and Lliminated rectangular plates. J. Appl. Mech. 51, 195 198,

Bolotin, V. V. (1964). The Dyvnamic Stability of Elastic Systems. Holden-Day, New York.

ElishakotT, L, Birman, V. and Singer, J. (1984). Effect of imperfections on the vibrations of Toaded structurses. J.
Appl. Mech. S, 191 193,

ElishakotT, L, Birman, V. and Singer. J. (1987). Small vibrations of an imperfect pancel in the vicinity of a non-
lincar static state, J. Sound Vibr. 114, 57 63.

Hlui, D (1984). Effects of geometric imperfections on large amplitude vibrations of rectangular plates with
hysteresis damping. J. Appl. Mech. §1, 216 220.

Hui, D. (1985). Effects of geometric imperfections on frequency Hoad interactions of biaxially compressed anti-
symmetric angle ply rectangular plates. J. Appl. Mech. 52, 155-162.

tlui, 2. and Leissa, AL (1983). Effects of geometric imperfection on vibrations of biaxially compressed rectangular
Lt plates. J. Appl. Mech. 50, 750 756.

Lueissa, A, WL (1981). Advances in vibration, buckling and postbuckling studics on composite plates. Composite
Structures, Proc. Ist Int. Conf. (Edited by 1, H. Marshall), pp. 312 334, Applicd Science.

Pasic, H. and Herrmann, G. (1984). Effect of inplanc inertia on buckling of imperfect plates with large defor-
mations. J. Sound Vibr. 95, 469 478,

de Souza, M. AL (1987). Post-buckling vibration characteristics of structural elements. Engng Struce. 9, 134137,

de Souza. M. AL (1985). Dynamic behaviour of structural elements liable to buckling. Proceedings of the IUTAM
Svmposiunt on the iclastic Behaviour of Plates and Shells, PUC; R, Rio de Janciro, Brazil.



42 A. BHIMARADDL

APPENDIX
Force-displucement relations
N, My A B, B, B, B, Uy + bW,
AN A 5'1.' E:: B, 8. o+ I:“'(:;_,
M ﬁu 5|: D-II Ds: L (AD)
M = D:: DI: D-:: Uyr
M, =Dy, -Dy; = Wi
Symm.
M, L D;: =W,
C N, Aoe Boo B, Ug, +Co HWa Wy,
M| = EM D-M D-M. wy, U, (A2)
LM, B.. D—hh - D, =2w,,,
B (l.LI: ﬂ‘.‘l’,‘i _N LR K w, ] ‘ i‘““
' cn v AR G cxders
- v
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= A T e 13 Al
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(A, i, 8,.8,.0,.0,.0, f(,,(l
PP PP P = Jp(l‘:.é.:’.:i‘i’) dz. (A4)
Fyquilibriven cquations in termys of displacements
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